
Introduction

Benthic distribution and community features, such as
composition, diversity and standing stock, are known
to be influenced by a complex of abiotic and biotic
factors (Dayton 1984). In the scientific literature, a

wide variety of different–and partly interacting–para-
meters have been discussed in this context, e.g. water
depth, habitat heterogeneity, seafloor properties,
bottom-water hydrography, food availability, as well as
inter- and intraspecific competition and disturbance
caused by predation or burrowing activities (Gray
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1981). The relative importance of these benthic com-
munity determinants strongly depends on the spatial
scale considered (Dayton and Tegner 1984; Gage and
Tyler 1991). Seabed attributes are most commonly
suggested to be major control factors (Snelgrove and
Butman 1994), but in the recent past the quantity,
quality and temporal pattern of food supplies have been
recognized as equally important in affecting the
benthos (Dayton and Oliver 1977; Graf 1992).

With only few exceptions at hot vents (Grassle
1986) or cold seeps (Sibuet and Olu 1998), the food
supply of benthic communities depends almost entirely
on the flux of phytogenic organic matter from the upper
euphotic layer of the water-column to the seafloor
(Tyler 1995). For this fundamental relationship, the
term “pelago-benthic coupling” has been coined
(Hargrave 1973). The recurrent finding that food avail-
ability is a principal benthic community determinant
suggests that the benthos is strongly affected by abiotic
and biotic water-column processes which mediate both
pelagic production and the sedimentation of organic
matter to the seabed (Graf 1992). In the same manner,
benthic organisms have been shown to modify particle
flux in the near-bottom water layer (Thomsen et al.
1995), as well as the deposition of particles in the
sediment (Graf et al. 1995) in manifold manners.

The mechanisms and effects of processes involved
in pelago-benthic coupling can be investigated on
various scales of time and space (Ritzrau et al. this vol-
ume). For instance, the metabolic response of micro-
and meiobenthic organisms to seasonal food pulses in
terms of activity and biomass has been shown to be
quite rapid, i.e. occurs within days (Graf 1989). In con-
trast, community patterns are pronouncedly more inert
in their reaction to environmental forcing, especi-
ally those of larger macro- and megabenthic organisms
(Gage and Tyler 1991). The distribution and structure
of assemblages integrate the impact of control factors
over longer periods of time and reflect relatively long-
lasting or predictably recurrent environmental states.
Therefore, studies of these patterns can provide clues
to the long-term effects of potential community deter-
minants, i.e. on a time scale of months to years.

This was the basic rationale of the study of spatial
patterns in benthic community distribution and struc-
ture conducted within the sub-project A3 “Benthic
community patterns and particle flux” of the Sonder-
forschungsbereich (SFB) 313 in the northern North
Atlantic, i.e. the Greenland-Iceland-Norwegian Seas
(GIN), since 1985. Various meso-scale field studies
were carried out, covering a broad water depth gradient
between continental shelves and abyssal plains (40 to

3,700 m) and encompassing areas in both the generally
ice-free eastern GIN Seas (Vøring Plateau at approxi-
mately 68° N, western Barents Sea slope at 75° N) and
the predominantly ice-covered western GIN Seas
(Denmark Strait and Kolbeinsey Ridge at 68° N, East
Greenland continental slope at 75° N, 79° N and 81° N,
and Northeast Water Polynya at approximately 80° N).
Various benthic community fractions have been in-
vestigated, such as foraminifers (Ahrens 1994; Ahrens
et al. 1997; Altenbach 1992), sponges (Barthel and
Tendal 1993; Witte 1994; Witte 1996; Witte et al. 1997;
Witte and Graf 1996), macrobenthic endofauna in
general (Romero-Wetzel 1987; Romero-Wetzel 1989a;
Romero-Wetzel 1989b; Romero-Wetzel and Gerlach
1991; Schnack 1998; Seiler 1998; Thomsen et al.
1995), peracarid crustaceans, i.e. Amphipoda, Cu-
macea, Isopoda, Mysidacea and Tanaidacea (Brandt
1993; Brandt 1995; Brandt 1997a; Brandt 1997b;
Brandt and Piepenburg 1994; Brandt et al. 1996), echi-
noderms (von Juterzenka 1994; Piepenburg 1997;
Piepenburg 1998; Piepenburg and von Juterzenka
1994), as well as epibenthic megafauna in general
(Mayer 1995; Mayer and Piepenburg 1996; Piepen-
burg et al. 1997; Piepenburg and Schmid 1996). The
common goal of these studies is to assess the degree to
which benthic communities depend on and /or mediate
carbon flux between the pelagic and benthic realms, as
well as between seafloor, sediment-water interface and
benthic boundary layer. The primary objective of this
paper is to provide a synoptic overview of the various
findings and to frame general conclusions from their
implications. Special emphasis is placed on the western
Greenland Sea, where most of the work has been
carried out since 1992.

Materials and Methods

Areas Studied

The continental margin of the western Greenland Sea,
i.e. the area off eastern Greenland north of Iceland and
south of the Fram Strait, is rather narrow (mostly
< 100 km) and rugged, consisting of numerous shallow
banks separated by trenches several hundred metres in
depth (Perry and Fleming 1986). The hydrography of
the region is strongly affected by the cold East Green-
land Current, which transports polar surface-water
(T < 0 °C, S < 34) and–primarily multi-year – sea ice
from the Arctic Ocean to the south (Coachman and
Aagaard 1974; Quadfasel et al. 1987). In general, the
waters are ice-covered throughout the year (Wadhams
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1981) and thus belong to the permanent pack ice zone
(Hempel 1985). Field investigations were conducted in
three regions (Fig. 1).

The bottom morphology of the shelf off north-
eastern Greenland between 78° and 82° N is char-
acterized by a system of shallow banks with water
depths of < 40 to 150 m and troughs with water depths
of as much as > 500 m. At depths < 100 m, tempera-
tures are < 0 °C and salinities < 34.4. At greater depths,
values are slightly higher (0.5° to 1.0 °C and 34.4 to
34.9), implying an inflow of Atlantic water masses to
the shelf troughs (Budéus et al. 1997; Budéus and
Schneider 1995). A geostrophic circulation of surface-
water masses, indicating an anticyclonic meso-scale
topography-driven gyre centred over Belgica Bank,
was detected in several studies (Bourke et al. 1987;
Schneider and Budéus 1994). A polynya referred to as
Northeast Water (NEW) is a recurrent annual feature of
variable size south of Nordostrundingen (Budéus et al.
1997; Schneider and Budéus 1994), extending to a size
of up to 120,000 km2 (Böhm et al. 1997) in some years.
The formation and development of the polynya are con-
trolled by a combination of various factors, including

winds, insolation, surface-water currents (Minnett et al.
1997), as well as the effect of persistent fast ice plates
(Budéus et al. 1997; Schneider and Budéus 1995). It
has been demonstrated that pelagic productivity is
higher in the NEW Polynya than it is in surrounding
ice-covered regions (Lara et al. 1994; Smith 1995;
Spies 1987). In general, the transport of pelagic par-
ticles to the seabed is rapid due to low water depths in
the area, but the actual temporal pattern and quality 
of this flux (autotrophic vs. heterotrophic origin) is
strongly affected by sea-ice distribution (Ramseier et
al. 1997). The abundance and grazing impact of herbi-
vorous meso- and macrozooplankton appears to be
relatively low (Ashjian et al. 1997; Ashjian et al. 1995;
Hirche et al. 1994; Hirche and Kwasniewski 1997),
pointing to strong pelago-benthic coupling. Rather
fine-grained sediments cover the seafloor, particularly
in the shelf troughs and at the continental slope
(Piepenburg 1988). Coarser sediments and ice-rafted
dropstones were found primarily on the shelf banks,
indicating higher average bottom-water current veloci-
ties. Photographs reveal a pronounced patchiness of
seabed facies at the 100-m scale, comprising areas of
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uniform soft bottom as well as patches of gravel
(Piepenburg 1988).

Off eastern Greenland at 75° N, the shelf break, i.e.
the 200-m isobath, is approximately 200 km off the
coastline. Within an area stretching 60 km further to the
east, water depths rapidly increase in a steep descent of
2 to 6% from 200 to 2,800 m (Weber 1989). The area
studied lies under the eastern edge of the East Green-
land Current and is, therefore, generally but not always
ice-covered throughout the year, depending on meso-
scale fluctuations in surface current regime (Wadhams
1981). The bottom-water of the shelf break and upper
slope (200 to 800 m) has a temperature slightly > 0 °C,
indicating the entrainment of relatively warm Atlantic
Water, whereas at greater depths, Deep Water masses
(T < 0 °C, S = 34.9) prevail (Coachman and Aagaard
1974). At the shelf break, the seabed is characterized by
a pronounced small-scale (10 to100 m) heterogeneity
in texture and composition. At the slope, however,
biotic structures provided by octocorals and sponges or
a uniform soft bottom prevailed (Mayer and Piepen-
burg 1996).

The southern area studied comprises the Denmark
Strait between Iceland and Greenland, as well as the
Kolbeinsey Ridge at 67°55’N, 210 km north of the Ice-
landic coast. Various water masses of different origin
and properties are found in the area. The northeastern
part is primarily influenced by the Arctic Water of the
Iceland Current, the western part by a cyclonic gyre
located between the Iceland-Faeroes Ridge and the Jan
Mayen Ridge, with a T–S signature intermediate bet-
ween very cold but less saline Polar Water and re-
latively warm, fully marine (in terms of salinity)
Atlantic water (Hopkins 1991). Towards the southwest,
the significance of the East Greenland Current as
characterized by Polar Water and permanent ice cover
increases (Birgisdottir 1991; Henrich et al. 1989).
During study conducted in 1992, surface-water tempe-
ratures along the Kolbeinsey Ridge transect increased
from more than 1.9 °C at the westernmost station to
5 °C at the easternmost station. Bottom-water tempe-
ratures, however, varied considerably less, ranging only
from −0.42 °C to −0.55 °C (Piepenburg and von Juter-
zenka 1994). Seabed sediments reflect surface hydro-
graphy, biogenic particle production within the water-
column, the extent of ice cover and submarine volcanic
activity. Coarse-grained volcanic material predomi-
nates in the ridge area (Oehmig and Wallrabe-Adams
1993), whereas fine-grained detritus from Iceland
characterizes the adjacent basins (Lackschewitz and
Wallrabe-Adams 1991). The carbonate content of the
sediment surface, generally interpreted as indicator for

water mass productivity, decreases towards the south-
west (Paetsch et al. 1992). Since the late Tertiary,
sedimentation rates north of Iceland have been high,
probably reflecting a high input of ice-rafted material
(Thiede et al. 1986).

Sampling

The basic approach of this sampling strategy was to in-
vestigate macrobenthic communities along gradients in
terms of water depth, hydrography and sea-ice cover
for the purpose of analysing their distribution and struc-
ture in response to different regimes of sediment com-
position, as well as to pelagic production, sedimenta-
tion and, hence, food supply. Within the three principal
areas studied, stations were, therefore, usually distri-
buted along transects extending from the shelf over the
continental slope to the abyssal realm. During six ex-
peditions to the Greenland Sea carried out between
1992 and 1997, (Fahrbach 1995; Hirche and Kattner
1994; Krause 1996; Mienert et al. 1998; Pfannkuche et
al. 1993; Spindler et al. 1998) macrobenthic samples
were obtained from 76 stations (Table 1).

A variety of sampling methods were employed
(coring devices, trawled gear such as epibenthic sledge
and Agassiz trawl, as well as seabed imaging) to collect
quantitative information about the organisms in the
various benthic community fractions under investi-
gation.

For the study of endobenthic macrofauna, 2 to 3
replicate box cores (BC) were taken per station or, less
frequently, a modified multiple corer (MUC) was em-
ployed. Sediment surface area (sub-)sampled in each
core varied between 78 (MUC) and 625 cm2 (BC).
Core contents were sieved on a 300-µm mesh sieve and
fixed with 4 % buffered formaldehyde. Macrofaunal
organisms were sorted from the sediments, and indivi-
duals were identified and counted. Biomass was esti-
mated by a combination of direct weighing, measure-
ments of biovolume and biometric modelling (Schnack
1998; Seiler 1998).

Sponges and peracarid crustaceans were sampled
with an Agassiz trawl (AGT) and an epibenthic sledge
(EBS) (Brandt and Barthel 1995; Voß 1987). Both
trawled gears were hauled over the ground for 10 
to 20 min. at a mean velocity of 1 kn (Barthel and
Tendal 1993; Brandt 1993; Brandt 1995). As the
distances sampled varied, abundance was standard-
ized to 1,000-m haul length (i.e. using the unit ‘ind.
1,000 m−1’). Samples were decanted through a 300-µm
screen and preserved in 4 % buffered formaldehyde
solution before being transferred to 70 % ethanol 
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after 2 days. Further sample processing followed the
methods already outlined in previous papers (Brandt
1993; Brandt 1995; Brandt and Barthel 1995).

For an assessment of epibenthic megafaunal abun-
dances, series of underwater photographs (UWP), each
depicting approximately 1 m2 of the seabed, were taken
along transects of approximately 100- to 600-m lengths
from the drifting ship. For details on the camera system
used and its operation see Piepenburg and von Juter-
zenka (1994). Megabenthic organisms were counted on
each photograph. The average counts per station were
raised to abundance figures (ind. m−2) using the mean
area covered by each photograph taken along a given
station transect. Biomass was computed by combining
mean abundances, body size frequencies and size-mass
relationships obtained from specimens sampled by
AGT or EBS (Piepenburg 1997).

For ease of comparison, all biomass figures were
converted to organic carbon using conversion factors
given in the literature (Brey et al. 1988; Lampitt et al.
1986; Rowe 1983; Salonen et al. 1976; Wacasey and
Atkinson 1987).

Data Analysis

A variety of classification and ordination techniques
(Clarke and Warwick 1994; Field et al. 1982; Piepen-
burg and Piatkowski 1992) was applied to species-
station abundance data to identify distinct groups of
stations with similar faunal composition for each of the
community fractions considered. In case of low station
numbers, such groups were discerned on the basis of
well-pronounced environmental and concurrent faunal
gradients. Per definitionem, these faunal zones were
inhabited by distinct macrobenthic assemblages and
are, therefore, regarded as natural units for which aver-
ages of diversity and stock size can be meaningfully
computed.

To identify principal community determinants, the
biotic patterns distinguished in these macrobenthic data

sets were related to information about the environment.
For both seabed and water-column parameters, data
were available through interdisciplinary cooperation
within the SFB 313 or the shipboard scientific parties
of the various expeditions. For instance, the percentage
of silt and clay, i.e. sediment grain size ≤ 63 µm,
in surgical sediments was used to parameterize sedi-
ment granulometry. Bottom-water temperature and
salinity characterized water mass. The concentration of
chloroplastic pigments in the sediment, organic carbon
content and carbon-nitrogen ratios were used as prox-
ies of the quality and quantity of potential food for the
benthos. Sediment-oxygen demand quantified the acti-
vity of the sediment communities. Water-column pig-
ment concentrations parameterize the current stock of
the ultimate pelagic food source for the benthos. Water-
column “nitrate depletion”, i.e. nitrate concentrations,
inversely scaled by being subtracted from the regional
maximum concentration, was used as a proxy of export
production despite the potential for results to be con-
founded by multiple source water signatures (Piepen-
burg et al. 1997).

In addition to the environmental parameters used in
the above-mentioned papers and theses, an alternative
proxy of potential food supply to the benthos which
parameterizes both the magnitude of its primary
source, that is, the largely sea-ice controlled pelagic
production of organic matter and its vertical flux 
out of the euphotic zone, and its depth-dependent 
decay during further descent in the water-column 
was computed for the present synopsis. The euphotic
carbon source was estimated using an empirical model
(Ramseier et al. 1999) which, based on data derived
from sediment trap measurements and remotely sensed
ice parameters, provided flux values of organic carbon
at 500 m water depth as a function of the ambient ice
regime (ice concentration, duration of ice cover and
distance from the ice edge) for the years 1985–1996. To
account for the general decrease of vertical particle
flux with water depth during sedimentation to the
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Vessel /Cruise /Leg Year Region Depths [m] Sampling # Cruise report

Meteor 21/5 1992 Kolbeinsey Ridge 830 –1100 T, I 5 Pfannkuche et al. (1993)
Polarstern ARK IX/ 2+3 1993 NE Greenland 40 –800 C, T, I 40 Hirche and Kattner (1994)
Polarstern ARK X /1 1994 Greenland 75° N 190 –2780 C, T, I 8 Fahrbach (1995)
Polarstern ARK XI / 2 1995 NE Greenland 180 –1970 C 7 Krause (1996)
Meteor 36 /3 1996 Denmark Strait 390 –1570 C 7 Mienert et al. (1998)
Polarstern ARK XIII / 1 1997 NE Greenland 350 –3500 C 3 Spindler et al. (1998)

Greenland 75° N 200 –3700 C 6

Table 1: Cruises to the Greenland Sea from 1992 to 1997. Sampling: C – coring by box or multiple corer; T – trawling by epibenthic
sledge or Agassiz trawl; I – seabed imaging; # – number of stations
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seafloor as caused by decomposition, grazing and other
processes, a modified exponential function (Martin et
al. 1987) was applied. The proxies obtained by this
approach are certainly only gross estimates of the
actual food supply in absolute terms. Nevertheless, they
are assumed to mirror rank differences in carbon flux
to the seabed between stations with sufficient fidelity.

Various approaches were applied to explore the de-
gree to which macrobenthic community traits are re-
lated to the environment. The most straightforward
approach is to interpret the general spatial concordance
in the distribution of biotic and environmental patterns
(Brandt 1995). A Spearman rank correlation analysis of
the interrelationships among these environmental
variables and macrobenthic bulk parameters, such as
species diversity or total abundance and biomass, was
applied to identify the potentially relevant determinants
of benthic community patterns (Piepenburg 1997;
Schnack 1998). In a strictly explorative approach in-
volving no inferential testing, the resulting hetero-
geneous pattern of positive and negative associations
among the variables was further examined using corre-
lation-based principal component analysis (Piepenburg
et al. 1997). At a multivariate level, i.e. regarding the
faunal composition of macrobenthic assemblages, two
non-parametric statistical approaches were used: (a)
the permutation-based ANOSIM procedure (Clarke
and Green 1988) examines whether there are signifi-
cant differences among pelagically defined provinces
in terms of their benthic faunal composition, thus pro-
viding evidence for the significance of pelago-benthic
coupling at a meso-scale spatial level; (b) the multi-
variate BIO-ENV correlation technique (Clarke and
Ainsworth 1993) identifies the set of environmental
factors which best correlates with macrobenthic faunal
composition and may, therefore, be assumed to strong-
ly affect the macrobenthic communities studied.

Results and Discussion

First, the findings obtained by SFB 313 studies are
briefly communicated for the various community
fractions to establish a sound basis for the subsequent
synopsis.

Foraminifera

The large-scale distribution of benthic foraminiferan
assemblages in the abyssal Greenland and Norwegian
Sea features a pronounced depth zonation (Altenbach
1992). This influence is also discernible in a shift of the

relative importance of various feeding types. With in-
creasing depth and subsequently decreasing carbon
flux, suspension-feeding species gradually became
more important than debris feeders, and at greatest
depths and fluxes < 1.5 g C m−2 a−1 opportunistic
species, which can feed on all kinds of nutrient sources
and survive with a very sporadic food supply predomi-
nate. On the northeastern Greenland shelf, in the region
influenced by the NEW Polynya, 61 foraminiferan
species were identified from a total of 19 stations at
depths of 170 to 490 m (Ahrens 1994; Ahrens et al.
1997). Multivariate analyses of abundance data suggest
that foraminiferan communities fall into two major fau-
nistic zones: the polynya proper in the north and 
the predominantly ice-covered Belgica Trough to the
south. Abundances and biomass in surficial sediments,
ranging from 97,000 to 507,000 ind. m−2 and from 
0.1 to 0.3 g C m−2, were comparable to ice-free deep-
sea regions of the Norwegian Sea. Distribution, compo-
sition and biomass were correlated with sediment
pigment and ATP content, with maxima occurring in
the northern shallow polynya region, suggesting a
general dependence on food availability.

Porifera

The composition and distribution of sponge assem-
blages have been studied in the abyssal Norwegian and
Greenland Sea at water depths of 2,000 to 3,300 m
(Barthel and Tendal 1993). 19 species were recorded,
most of which were new to the area. A core association
of 8 regularly occurring species distributed in the 
entire deep Norwegian and Greenland Seas was iden-
tified. The most abundant species, the demosponge
Thenea abyssorum, which has been used as a character
species for high Arctic areas (Paul and Menzies 1974),
comprised more than 50% of the individuals of all taxa
caught at many stations (Witte, unpubl. data).

Crustacea Peracarida

Peracarid crustaceans were investigated in all three
major areas studied in the western Greenland Sea: at
the Kolbeinsey Ridge (Brandt 1993; Brandt and
Piepenburg 1994), at the continental margin of eastern
Greenland at 75° N (Brandt 1997a), and off north-
eastern Greenland (Brandt 1995; Brandt et al. 1996). In
total, more than 60,000 specimens of peracarid crusta-
ceans were collected from 33 epibenthic sledge catches
obtained (Brandt 1997b). In addition to polychaetes
and bivalves, peracarid crustaceans were the most
abundant macrofaunal animals in each of the areas
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studied. Off NE Greenland, in the region of the NEW
Polynya at water depths between 45 and 517 m, the
peracarid fauna was dominated by Cumacea (rela-
tive abundance of 31 %), followed by Amphipoda
(28 %), Isopoda (25 %), Mysidacea (12 %) and Ta-
naidacea (3%). Total peracarid abundance was highest 
at 280 m with approximately 16,000 ind. 1,000 m−1

and decreased to approximately 5,000 ind. 1,000 m−1 at
depths < 100 m and approximately 30 ind. 1,000 m−1 at
500 m depth. On the continental slope at 79° N, at
depths of 200 to 1,800 m, Cumacea were again the most
numerous taxon (33%), followed by Isopoda (28%),
Amphipoda (21%), Mysidacea (12%) and Tanaidacea
(6 %). The highest total abundance (35,738 ind.
1,000 m−1) was reported from the deepest station at
1,800 m. At 75° N, along a transect ranging from 300
to 2,700 m depth, Isopoda were most frequent (51 %),
followed by Amphipoda (27 %), Cumacea (14 %),
Tanaidacea (4 %) and Mysidacea (3 %). Total abun-
dance was highest at 1,525 m (23,000 ind. 1,000 m−1),
being 70% higher than at the deepest station at 2,700 m
and even 340% higher than at the shallowest station at
300 m. On the Kolbeinsey Ridge, at depths between
830 and 1,100 m, Isopoda and Amphipoda were most
abundant, followed by Cumacea and Tanaidacea. Mysi-
dacea were very rare. There were pronounced differ-
ences between the eastern and western ridge flanks in
faunal composition, diversity and abundance (Brandt
and Piepenburg 1994). Total densities were highest on
the eastern flank at 940 m (approximately 6,100 ind.
1,000 m−1) and decreased rapidly to values of approxi-
mately 100 ind. 1,000 m−1 towards both the west and
greater depths.

Macrobenthic Endofauna

The macrobenthic fauna of the East Greenland conti-
nental margin was investigated in all three major areas
studied (Schnack 1998; Seiler 1998), with special em-
phasis on polychaetes (Schnack 1998). Stations were
located on four down-slope transects across the conti-
nental shelf break at 81° N (350 to 3,400 m depth),
79° N (200 to 2,000 m), 75° N (200 to 3,700 m) and at
68–69° N (280 to 1,200 m), as well as on a parallel-
slope transect along the 2,000 m isobath between 79° N
and 80°30’ N. In total, 75 box corer sub-samples
(0.0625 m2) and 6 multicorer samples from 31 stations
were analysed. The taxonomic spectrum comprised Po-
rifera, Brachiopoda, Sipunculida, Nemertini, Priapu-
lida, Aplacophora, Bivalvia, Gastropoda, Polychaeta,
Acari, Crustacea, Ophiuroidea and Holothuroidea. 
The polychaete fauna consisted mainly of Atlantic zoo-

geographic elements and was characterized by a low
number of species. From all samples, a total of 81
species was identified. Species numbers per station
decreased with depth and were generally low compared
with more temperate areas, such as in the NE-Atlantic
Rockall Trough (Paterson and Lambshead 1995) or the
Irish Sea (Mackie et al. 1997). Multivariate statistics re-
vealed a depth zonation with 3 distinct polychaete
assemblages at shelf (200 to 400 m), mid-slope (800 to
1,400 m) and deep stations (> 1,400 m) for the two
down-slope transects along 75° N and 79° N. On the
continental shelf between 75° N and 79° N, the assem-
blages were similar in composition. With increasing
water depth the similarity between transects decreased.
Stations from the parallel-slope transect at 2,000 m
depth were quite different in faunal composition from
those of the down-slope transects.

Megabenthic Epifauna

Epibenthic megafauna was investigated in three areas
by means of seabed photography and concomitant
trawl or sledge catches: in the NEW area at 54 stations
at depths between 40 and 770 m (Piepenburg and
Schmid 1996), on the continental slope at 75° N at 8
stations at depths ranging from 190 to 2,800 m (Mayer
1995; Mayer and Piepenburg 1996), and at the Kolbe-
insey Ridge along a 34-km-long cross-ridge transect at
67°55’ N at depths of 830 to 1,100 m (von Juterzenka
1994; Piepenburg and von Juterzenka 1994).

In the NEW area, 10 epibenthic species were quanti-
tatively analysed on a total of 2,358 photographs.
Multivariate analyses of megabenthic species distribu-
tion revealed a distinct depth zonation. Shallow shelf
banks (< 150 m), characterized by coarse sediments,
numerous stones and boulders as well as by negative
bottom-water temperatures, housed a rich epifauna (30
to 340 ind. m−2, 0.9 to 5.2 g C m−2) strongly dominated
(80 to 98% by numbers) by the brittle stars Ophiocten
sericeum and Ophiura robusta. On the bank flanks
sloping to the shelf troughs (100 to 580 m), finer sedi-
ments prevailed, stones were rare, and bottom-water
temperatures were positive due to the inflow of Atlantic
water. Compared to bank sites, total epibenthic abun-
dances were roughly ten times and total biomass about
four times lower. In deep shelf depressions as well as
at the continental slope (200 to 770 m), stones were
completely lacking and sediments very fine. Epibenthic
abundance and biomass were one to two orders of
magnitude lower than on the banks.

On the East Greenland continental slope at 75° N, a
total of 91 epibenthic species with 14,447 individuals
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were identified from 422 photographs depicting 297 m2

of the seafloor. Using classification and ordination
analyses, three faunal zones were distinguished which
correspond to different depth regions of the continental
margin: shelf break (190 to 370 m), upper slope (760
to 800 m) and lower slope (1,400 to 2,800 m). Mega-
faunal abundance was highest on the shelf (approxi-
mately 200 ind. m−2). In the other zones, densities 
were distinctly lower (30 to 40 ind. m−2 and 15 to 20
ind. m−2). The assemblages at the shelf break and on the
lower slope were dominated by single species, such as
the polychaete Nothria conchylega (synonymous with
Onuphis conchylega) and the sponge Polymastia sp. In
contrast, the upper slope was characterized by a diverse
octocoral-sponge assemblage.

On the Kolbeinsey Ridge, only the brittle star fauna
was analysed in quantitative terms. Only five species
were found, and only one species, Ophiocten gracilis,
occurred with densities of more than 1 ind. m−2. Ophiu-
roid distribution was characterized by differences bet-
ween ridge slopes. In general, densities were signifi-
cantly higher on the eastern slope, where the highest
mean abundance per station of O. gracilis was 497 
ind. m−2. Except for one station, a distinct patchiness on
the 100-m scale was obvious in its spatial distribution.
Small settling stages with disc diameters < 1 mm ac-
counted for up to 98% of the population of O. gracilis
near the ridge top, but the abundance of these small
specimens decreased with depth to only 6 % on the
eastern slope foot. Highest total biomass (0.06 g C 
m−2) was found on the deep eastern slope, where adult
O. gracilis with disc diameters > 4 mm were most
abundant (56 ind. m−2).

Synopsis

Summarizing the various investigations, the depth
zonation of benthic assemblages was the most con-
spicuous spatial pattern throughout the areas studied,
whereas latitudinal differences were–within the geo-
graphical range covered – noticeably less pronoun-
ced. However, there were differences among com-
munity traits and faunal groups in the clearness of this
pattern.

Zoogeography

From all three areas studied, 288 peracarid species
from 152 genera and 59 families were identified
(Brandt 1997b). 38 genera were very frequent and
showed a wide zoogeographic range. They were
sampled during each expedition, comprising 22 species

of Isopoda, 7 species of Cumacea, 3 species of Amphi-
poda and Mysidacea, each, and 2 species of Tanai-
dacea. 60 genera are eurybathic, occurring at least over
a depth range of 1,000 m, some even from the shelf
down to 2,681 m depth. Only 10 genera are stenobathic,
occurring only in the deep sea.

Among the brittle stars sampled and / or photo-
graphed in the Greenland Sea, there were no species
new to science or the area studied (Piepenburg 1997;
Schnack 1998). However, the discovery of the bathyal
species Ophiocten gracilis at the Kolbeinsey Ridge
(Piepenburg and von Juterzenka 1994) suggests that it
should be added to current lists of echinoderms occur-
ring in Arctic waters (Anisimova 1989; Smirnov
1994a). In accordance with previous reports, only few
endemic Arctic species were found while the majority
of the brittle stars species were widespread boreal
Arctic species (Piepenburg 1997).

About a third of the polychaete species also be-
longed to this zoogeographic category, while the re-
maining two thirds were even more widely distributed
species in the Arctic as well in boreal waters of both 
the Atlantic and Pacific Oceans (Schnack 1998). Some
species were even cosmopolitan, whereas no endemic
Arctic species were found at all. A similar zoogeogra-
phic composition of polychaete assemblages has been
reported from most sub-Arctic and Arctic seas (Bilyard
and Carey 1980; Holthe 1978).

Generally, findings for polychaetes, peracarid crusta-
ceans and brittle stars corroborate the notion of a com-
paratively young age and low degree of zoogeographic
isolation of Arctic regions such as the western Green-
land Sea (Dunbar 1977; Dunton 1992; Knox and
Lowry 1977; Smirnov 1994a; Svavarsson et al. 1993).

Diversity

Overall, there is no consistent latitudinal or bathymetric
trend for species richness throughout the entire study
area. For peracarid crustaceans in total, for instance,
there is no significant relationship for depth or latitude
(Brandt 1997b). Only for Amphipoda separately, spe-
cies numbers decreased slightly with depth whereas 
for Isopoda the opposite trend was discernible. A simi-
lar bathymetric pattern was also reported from the
Norwegian Sea (Dahl et al. 1976) but not for the amphi-
pod fauna off northern Iceland (Weisshappel and
Svavarsson 1998). This may be attributed to changes in
sediment structure with depth (Brandt 1993) and /or the
general appearance of the taxa in the course of the evo-
lution of Eumalacostraca (Schram 1981). The species
richness of polychaete fauna on the East Greenland
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margin, in addition to being lower than in boreal
regions, also declined significantly along the depth
range of 200 to 2,700 m (Schnack 1998). Findings for
both peracarid crustaceans and polychaetes do not,
thus, support the notion of somewhat elevated species
richness at bathyal depths of 2,000 to 3,000 m (Rex
1981; Rex 1983) or of relative high species richness in
abyssal biotopes in general (Gage and Tyler 1991;
Grassle 1989; Grassle and Maciolek 1992; May 1992).
Rather, these results corroborate recently formulated
criticism challenging the general validity of the latter
paradigm for the deep sea (Gray 1994; Gray et al.
1997).

Twelve brittle star species were identified in the
three areas studied (Piepenburg 1997). It should be
noted that the total number of ophiuroid species inha-
biting all Arctic seas– including the Siberian shelf seas
influenced by Pacific water masses – ranges between
only 15 (Smirnov 1994a) and 22 (Anisimova 1989) and
is, thus, rather low, especially compared to Antarctica,
from where more than 100 species have been reported
(Smirnov 1994b). A comparative case study shows,
however, that various diversity parameters (species
richness, Shannon diversity, evenness) of the ophiuroid
fauna of the eastern Weddell Sea (Antarctica) were
significantly higher at both local and regional scales
than off northeastern Greenland (Arctic), while those of
the assemblages inhabiting the southern Weddell Sea
shelf and shelf trenches were not (Piepenburg et al.
1997). As many species are phylogenetically more
closely related in the Weddell Sea than off Greenland,
the Antarctic assemblages also did not differ signifi-
cantly from those distinguished in the Greenland Sea in
terms of “taxonomic diversity” and “taxonomic dis-
tinctness” (Warwick and Clarke 1995). These findings
indicate that the paradigm of a pronounced Arctic-Ant-
arctic diversity difference may be an overgenerali-
zation, at least with regard to the brittle star fauna and
to regional / local scales (Piepenburg 1997).

Distribution

A pronounced depth zonation in the distribution of
benthic assemblages is consistent across the various
benthic community groups and areas investigated at the
continental margin of eastern Greenland. Generalizing
the different results, three principal zones can be dis-
tinguished:

• ‘shelf’ (< 400 m),
• ‘slope’ (800 to 2,000 m)
• ‘deep sea’ (> 2,000 m).

For some regions these major zones were more
finely partitioned. On the shelf off NE Greenland, for
instance, megabenthic assemblages on shallow banks
(< 100 m) and in shelf troughs (200 to 500 m) differ-
ed significantly in faunal composition (Piepenburg et 
al. 1997). For polychaetes and peracarid crustaceans,
however, faunal contrasts between a northern and
southern area of the NEW Polynya were more pro-
nounced than any bathymetric pattern (Ambrose and
Renaud 1995; Brandt 1995). In the area studied at
75° N, upper and lower slope assemblages were dis-
cerned for both megabenthos (Mayer 1995) and macro-
benthos (Schnack 1998; Seiler 1998). However, this
differentiation was not as distinct as that between shelf
and slope. Special distribution patterns were observed
for submarine ridges and plateaus, such as the Kolbe-
insey Ridge, where the differences detected between
the ridge slopes are most likely related to meso-scale
hydrography (Brandt 1993; Piepenburg and von Juter-
zenka 1994). For foraminifers and polychaetes, the
bathymetric zonation of faunal assemblages was shown
to be accompanied by a shift in the predominance of
various feeding types (Altenbach 1992; Schnack 1998).

A gross but consistent depth zonation in the distri-
bution of various benthic community fractions along
the entire continental margin studied is a general
phenomenon (Gage and Tyler 1991), although the
boundaries of these zones vary among regions and
faunal groups (Carney et al. 1983) on a global scale. It
is well known, for instance, that bathymetric faunal
change is more pronounced for megabenthos (Haedrich
et al. 1980) than for endobenthic polychaetes (Grassle
et al. 1979; Rex 1981).

Abundance, Biomass and Potential Carbon Demand

Despite a pronounced small-scale (i.e. within-station)
patchiness discernible for most faunal groups investi-
gated, it is evident that the depth zonation of benthic
fauna is generally accompanied by a clear decline in
benthic standing stock with water depth. This trend is,
however, not consistent across all faunal groups.

Both photographic inventories and trawl catches
clearly show that, in general, epibenthic communities
at the Greenland continental margin are dominated by
brittle stars (Piepenburg 1998). In shelf assemblages
(< 100 m), Ophiocten sericeum was by far most im-
portant in terms of abundance and biomass. At greater
depths (100 to 400 m), Ophiacantha bidentata pre-
vailed. Slope assemblages (400 to 1,000 m) were char-
acterized by Ophiopleura borealis and Ophioscolex
glacialis. On the shelf (< 100 m), as well as on the
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eastern Kolbeinsey Ridge (800 to 1,100 m), dense
brittle star beds forming high standing stocks of up 
to several hundred ind. m−2 and up to several grams
organic carbon m−2 were recorded (Piepenburg 1997).
These stock figures are among the highest observed in
northern seas, being in the same order of magnitude as
those reported for ophiuroid mass occurrences in
sublittoral and bathyal habitats of non-polar regions
(Piepenburg 1997). Sub-dominant taxa, such as sea
urchins, sea cucumbers and bivalves, reached only
about a tenth of ophiuroid abundance and half of ophiu-
roid biomass. Within the dense brittle star beds, the
specimens showed a pronounced non-random disper-
sion on the 1–100-m scale, most likely caused by the
heterogeneity of the seabed (presence of dropstones
etc.). Overall, ophiuroid abundances decreased signifi-
cantly with water depth from a maximum at approxi-
mately 50 m over roughly three orders of magnitude to
lowest values at approximately 800 m (Piepenburg
1997). Such a negative trend with depth was also ob-
vious for biomass, albeit with a decline over roughly
two orders of magnitude not as pronounced as for abun-
dance (Piepenburg 1997). A similar exponential bio-
mass gradient was reported for the invertebrate mega-
benthos from 500 to 4,100 m on the continental slope
of the Porcupine Bight at 50 to 52° N in the north-
eastern Atlantic Ocean (Lampitt et al. 1986).

Macrobenthic abundance (biomass), averaged for
different depth zones across all three regions studied,
was approximately 5,000 ind. m−2 (0.55 g C m−2) at
shelf stations at 200 to 400 m, approximately 2,000 ind.
m−2 (0.20 g C m−2) at mid-slope stations at 800 to
1,400 m, and approximately 1,800 ind. m−2 (0.13 g C
m−2) at 2,700 m (Schnack 1998). These values are in the
same order of magnitude as those reported from other
continental margins in comparable latitudes and depths
(Dahl et al. 1976). On the continental slope of the
western Barents Sea at 75° N at 1,340 m depth, for in-
stance, macrobenthic abundances varied between 557
and 1,052 ind. m−2 (Ambrose and Renaud 1995; Brink-
hurst 1991; Kendall 1996; Thomsen et al. 1995), and 
on the Vøring Plateau off Norway at approximately
67° N at depths of 1,200 to 1,500 m depth, macro-
benthic biomass ranged between 0.03 and 0.45 g C 
m−2 (Romero-Wetzel and Gerlach 1991). The mean
macrobenthic abundance and biomass of the entire East
Greenland continental margin investigated decreased
exponentially with water depth (Schnack 1998). How-
ever, such a clear bathymetric trend was not observed
for macrobenthic biomass at 75° N when examined
separately (Schnack 1998). At 79° N, macrofauna and
polychaetes analysed from box corer samples showed

a completely different depth pattern than that of pera-
carid crustaceans in EBS catches (Brandt and Schnack
in press). Macrofaunal abundance decreased clearly
from approximately 7,000 ind. m−2 at 200 m to approxi-
mately 2,000 ind. m−2 at 800 m and approximately 800
ind. m−2 at 2,000 m depth. Polychaetes clearly domi-
nated the shelf communities. However, their relative
percentages decreased with water depth while those of
Peracarida increased simultaneously.

The general decrease of benthic standing stock with
water depth is not only recognizable for most faunal
groups investigated but also for data sets pooled across
taxa and regions. Summarizing the biomass results of
the community fractions for which quantitative data are
available, it is evident that both mega-epibenthic and
macro-endobenthic biomass decreases significantly
with water depth along the depth range investigated (40
to 1,100 m and 190 to 3,700 m) (Fig. 2). The depth-
related biomass decline, however, is more pronounced
for the megabenthos (ρ = −0.888, n = 59, P < 0.0001)
than for the macrobenthos (ρ = −0.622, n = 32,
P = 0.0005). It should also be noted that this general
bathymetric trend may partly be breached, as the high
benthic standing stock observed on the eastern Kolbe-
insey Ridge (Fig. 2) emphasizes.

Macro- or megabenthic species are known to con-
tribute considerably to total benthic biomass (Haedrich
and Rowe 1977). Moreover, they strongly affect the
structure of benthic food webs (Lampitt et al.1986) and
the micro-scale environment, as well as exchange pro-
cesses at the sediment-water interface, by bioturbation
and bioirrigation (Hüttel and Gust 1992; Smith et al.
1993). The finding of high standing stocks of some
species, such as sponges and brittle stars, in the area
studied suggests that they are also important in the
benthic oxygen and carbon cycle. However, their
oxygen uptake as well as, by implication, their min-
eralization and demand for organic carbon is difficult
to assess. The major reason for this is that their total
respiration is not included in benthic community
oxygen consumption figures commonly derived from
sediment core incubations and must be estimated
separately by combining information concerning their
abundance, size distribution and mean individual respi-
ration rates (Piepenburg et al. 1995; Smith 1983). Using
this approach, the dense brittle star beds occurring on
the shelves off eastern Greenland are estimated to re-
mineralize up to approximately 0.005 g C m−2 d−1.
Applying appropriate production and assimilation
efficiencies, their extrapolated carbon demand is as-
sessed to total at 0.01 g C m−2 d−1 (Piepenburg 1997).
On the shelf banks of the northwestern Barents Sea,
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ophiuroid carbon demands are assessed to be even
higher, reaching maximum values of 0.02 g C m−2 d−1

(Piepenburg et al. 1995). The macrobenthic assem-
blages off eastern Greenland were computed to utilize
0.001 to 0.03 g C m−2 d−1 (Seiler 1998). Sponges in the
Greenland Sea have been shown to be responsible for
as much as 20% of sediment community oxygen de-
mand (Witte and Graf 1996), in addition to contributing
as much as 10% to particle input by the deposition of
fine, laterally advected material (Witte et al. 1997).
These results imply that macro- and megabenthic
assemblages represent important pathways in the parti-
tioning of benthic oxygen flux and significantly affect
the energetics of benthic systems in the Greenland Sea.
They provide additional evidence that models and
budgets for benthic carbon dynamics (Ritzrau et al. this
volume; Schlüter et al. this volume) need to be amen-
ded to adequately account for the contribution of abun-
dant megabenthic organisms such as sponges and
brittle stars (Piepenburg et al. 1975).

Determinants of Community Distribution and
Structure

The interpretation of these findings, concerning the
issue as to which factor from a host of potential deter-

minants ranging from food availability to seabed pro-
perties and bottom-water hydrography to biotic inter-
actions or life-history traits is of greatest significance
in controlling benthos distribution patterns, is complex.
The most prominent pattern in this data, the depth
zonation of benthic assemblages and the exponential
decline of benthic standing stock across shelves and
slopes to the abyss, is a common phenomenon in
Nordic seas (Curtis 1975). In fact, similar bathymetric
patterns have recurrently been detected in numerous
studies for different latitudes, different depth ranges
and different benthic taxa (Brey and Clarke 1993;
Haedrich et al. 1980; Lampitt et al. 1986; Rowe et al.
1974; Stewart 1983). The actual cause–or causes–of
this ubiquitous pattern are difficult to assess. Any
zonation observed must very likely be viewed as the
result of several direct and indirect processes operating
on various spatial and temporal scales (Carney et al.
1983).

The gradient most directly related to water depth,
that is, increasing hydrostatic pressure, is known to be
accompanied by specific physiological responses of
the organisms (Somero et al. 1983). However, its direct
effect on community patterns can be ruled out in this
case, as the depth range covered was too narrow
(Somero 1990). Biotic interactions, such as compe-
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tition (Menge and Sutherland 1987) and predation
(Dayton and Hessler 1972), or life-history traits (Gian-
grande et al. 1994; Olafsson et al. 1994), may also be
conceived as potential control agents of benthos dis-
tribution and standing stock. For instance, brittle star
populations are thought to be strongly affected by pre-
dation, based on paleoecological evidence (Aronson
and Sues 1987). According to this hypothesis, dense
beds of epibenthic brittle stars carpeting the seafloor
with hundreds to thousands of individuals per square
metre can only evolve and persist if predation pres-
sure is low. Ophiuroid mass occurrences which are
characteristic for many paleozoic and mesozoic facies
are presumed to be mainly caused by the general
scarcity of efficient durophagous predators, such as
modern teleost fish or decapod crustaceans, which did 
not radiate until the Cenozoic era (Aronson 1989).
Similarly, abundant brittle star populations found
nowadays are primarily reported from biotopes in
which potential predators are comparatively rare, such
as continental slopes (Fujita and Ohta 1989; Fujita and
Ohta 1990) and Arctic shelves (Piepenburg 1997). This
finding can be interpreted as evidence for the general
significance of predation as an effective top-down
control agent. Interspecific competition for limited
resources, such as food or space, is another biotic
determinant which may explain benthic composi-
tion and standing stock (Dayton 1984). However, the
actual significance of biological factors remains poorly
understood since they cannot, as a matter of principle,
be investigated by a ‘mensurative non-manipulative’
approach (Hurlbert 1984) as applied in these field
studies.

The findings presented here suggest that large-scale
benthic composition and standing stock in the Green-
land Sea are primarily affected by two factor com-
plexes: food availability and seabed properties. Both
are known to be strongly related to water depth,
hydrodynamics and various processes of particle trans-
port, such as turbidity plumes, Taylor columns and
internal waves (Fohrmann et al. this volume). There is
a general inverse relationship between sedimenta-
tion rates and water depths which is well documen-
ted (Martin et al. 1987; Suess 1980). This explains the
influence of the latter parameter on the quality and
quantity of organic carbon reaching the seafloor and,
hence, food supply for the benthos (Graf 1992). In
energy-limited systems, such as the deep sea or polar
seas, food supply has repeatedly been proposed as 
the prime agent controlling meio-, macro- and mega-
benthic biomass, since it is more important than phy-
siological adaptations, biological interactions or com-

petition for space (Aldred et al. 1979; Grebmeier and
Barry 1991; Hessler and Jumars 1974; Lampitt et al.
1986; Rowe et al. 1974).

Most, but not all, of the results presented here are
consistent with this chain of arguments, pointing to a
general significance of pelago-benthic coupling for the
benthos of the Greenland Sea:
• Well-pronounced depth zonation, for instance, as
well as spatial concordance in the distribution of 
high macrobenthic standing stocks with hydrographic
features, such as marginal ice zones, polynyas and
gyres, suggest that water-column processes strongly
influence benthic community patterns (Piepenburg
1997).
• A case study in the NEW Polynya implies more
stringently, particularly for foraminifers, polychaetes
and peracarid crustaceans, that both (univariate) abun-
dance and (multivariate) faunal composition of benthic
assemblages are related to meso-scale patterns in
hydrography and ice cover (Ambrose and Renaud
1995; Piepenburg et al. 1997). These are known to
control primary production, particle sedimentation and
ultimately food supply to the benthos as well (Greb-
meier and Barry 1991). Evidence for the significance
of the input of organic carbon is also available for a
shorter time scale (weeks to months) than that reflected
in benthic community patterns. For instance, both the
stable isotope and lipid composition of macrobenthic
organisms collected in the NEW area imply that a
considerable portion of their food consists of freshly
sedimented pelagic material (Graeve et al. 1997;
Hobson et al. 1995). Such a dependence is further
emphasized by studies of biochemical composition
(Gallagher et al. 1998).
• The spatial distribution, faunal and trophic compo-
sition as well as biomass of foraminiferan assemblages
in the deep basins of the GIN Seas (Altenbach 1992;
Sarnthein and Altenbach 1995) and on the northeastern
shelf of Greenland (Ahrens et al. 1997) are primarily
governed by the magnitude of organic carbon flux to
the seabed and, hence, nutrient concentration near the
seafloor, strongly suggesting a general dependence on
food availability.
• The seasonal reproductive pattern of the deep-
sea sponge Thenea abyssorum is related to the sea-
sonally pulsed food supply, a finding that further 
underpins the concept of generally close pelago-
benthic coupling in the GIN Seas (Witte 1994; Witte
1996).
• The factors which probably cause the diversification
of peracarid community structures observed in various
areas studied in the Greenland Sea range from food
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availability over substrate or hydrographical qualities
to interspecific competition (Brandt 1997b). For the
peracarid assemblages in the NEW area, however,
the first factor is thought to be of major importance
(Brandt 1995).
• For the macrobenthos at the continental margin of
eastern Greenland, BIO-ENV correlation analysis
shows that distribution and composition are mainly
related to water depth, whereas there is no general
correlation between community patterns and sediment
parameters such as grain size, organic carbon content,
C:N ratio or chl a content (Schnack 1998). However,
not depth per se but depth-related factors such as
hydrography and the temporal and spatial hetero-
geneity of particle sedimentation are thought to be most
important.
• Likewise, the benthic distribution observed at the
Kolbeinsey Ridge is interpreted to largely reflect a
cross-ridge gradient in terms of hydrographic re-
gime and, hence, the probable pattern of food supply
for the benthos (Brandt 1993; Piepenburg and von
Juterzenka 1994).

In contrast to all these findings which point to the
importance of food availability, multivariate analyses
of correlation between megafaunal and environmental
data at 75° N and in the NEW area indicate that epi-

benthic distribution patterns on a 10-km scale, i.e.
between stations, as well as the within-station disper-
sion of organisms, i.e. on a 100-m scale, may best be
explained by seafloor properties (Mayer and Piepen-
burg 1996; Piepenburg et al. 1997). On these spatial
scales, evidence for a direct pelago-benthic coupling is
not convincing, irrespective of water depth. Moreover,
investigations of the spatial distribution of particle
composition and microbial activity in the benthic
boundary layer of the NEW area strongly suggest that
pelago-benthic coupling is not a direct vertical relation-
ship (Ritzrau and Thomsen 1997).

To synoptically test the importance of food avail-
ability and sediment composition across mega- and
macrobenthic assemblages and different study areas,
benthic biomass was related to (a) proxies of particle
flux to the seafloor (estimated for stations deeper than
500 m and using the approach outlined in the Materials
and Methods section), and (b) sediment granulometry
parameterized by the relative proportion of fine mate-
rials (silt and clay). In these data sets, the parameters of
particle flux and sediment grain composition were not
significantly correlated (Spearman rank correlation 
ρ = 0.241, n = 21, P = 0.280). It was evident, however,
that the benthic bulk parameter biomass was closer
related to particle flux (Fig. 3) than to sediment grain
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size (Fig. 4), though admittedly neither correlation was
significant (ρ = 0.371, n = 28, P = 0.054 and ρ = −0.108,
n = 29, P = 0.562).

In summary, various findings corroborate the notion
that the availability of organic material, besides biotic
interactions, primarily affects benthic biomass and
abundance, while historical and physical factors, such
as sediment grain size, determine the faunal composi-
tion of benthic communities (Dayton 1990).

Conclusions

The synoptic view of various results from field investi-
gations on benthos distribution patterns presented in
this paper leads to the following major conclusions:
• A depth zonation in faunal composition, accom-
panied by a shift in the predominance of different
feeding types and a significant decline of as much as
two and three orders of magnitude in biomass and
abundance is the most conspicuous general pattern
found.
• However, there is no consistent clear latitudi-nal or
bathymetric trend for variations in species richness.
• For some species, e.g. sponges and brittle stars,
quite high standing stocks with considerable contri-

butions to total benthic biomass are documented,
suggesting that these groups strongly affect the struc-
ture of benthic food webs and exchange processes at
the sediment-water interface.
• Estimations of organic carbon demands of such
abundant benthic populations provide evidence that
current models of benthic carbon flow, which are ex-
clusively based on measurements of sediment oxygen
demand (SOD), must amended to adequately account
for the additional contribution of macro- and mega-
benthic organisms.
• Most of the findings concerning benthic community
patterns are interpreted as evidence of the importance
of water-column processes and, hence, food avail-
ability for the benthos as a determinant of benthic
assemblages in the Greenland Sea, thus stressing the
significance of pelago-benthic coupling in general in
the areas studied.
• However, for some species, such as megafaunal
echinoderms, community patterns on a 10-km scale, as
well as dispersion of organisms on a 100-m scale, are
best explained by seafloor properties, suggesting that
processes related to pelago-benthic coupling are of less
importance for this community fraction and at these
spatial scales.
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• The complex interpretation of these results empha-
sizes that the relative importance of interacting com-
munity determinants may vary among different spatial
scales and faunal groups with different body size,
mobility, or feeding ecology.
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